MATHEMATICS

DPP No. 56

Total Marks: 33

Max. Time: 37 min.

Topic: Vector

M.M., Min. Type of Questions

Single choice Objective (no negative marking) Q.1.2,3 Subjective Questions (no negative marking) Q.4,5,6,7 Match the Following (no negative marking) Q.8

(3 marks, 3 min.) (4 marks, 5 min.)

[9, 9] [16, 20]

(8 marks, 8 min.)

[8, 8]

Let $\vec{a} = 2\hat{i} + \hat{j} + \hat{k}$, $\hat{b} = \hat{i} + 2\hat{j} - \hat{k}$ and a unit vector \vec{c} be coplanar. If \vec{c} is perpendicular to \vec{a} then \vec{c} = 1.

(A)
$$\pm \frac{1}{\sqrt{2}}(-\hat{j} + \hat{k})$$

(A)
$$\pm \frac{1}{\sqrt{2}}(-\hat{j} + \hat{k})$$
 (B) $\frac{1}{\sqrt{3}}(-\hat{i} - \hat{j} - \hat{k})$ (C) $\frac{1}{\sqrt{5}}(\hat{i} - 2\hat{j})$ (D) $\frac{1}{\sqrt{3}}(\hat{i} - \hat{j} - \hat{k})$

(C)
$$\frac{1}{\sqrt{5}}(\hat{i} - 2\hat{j})$$

(D)
$$\frac{1}{\sqrt{3}}(\hat{i} - \hat{j} - \hat{k})$$

 $\vec{a} \times (\vec{b} \times \vec{c})$, $\vec{b} \times (\vec{c} \times \vec{a})$ and $\vec{c} \times (\vec{a} \times \vec{b})$ are: 2.

- (A) linearly dependent (B) equal vectors
- (C) parallel vectors
- (D) none of these

If \vec{a} is perpendicular to \vec{b} and \vec{r} is a non-zero vector such that $\vec{p} \cdot \vec{r} + (\vec{r} \cdot \vec{a}) \vec{b} = \vec{c}$, then \vec{r} 3.

(A)
$$\frac{\vec{c}}{p} - \frac{(\vec{a} \cdot \vec{c}) \vec{b}}{p^2}$$

(B)
$$\frac{\vec{a}}{p} - \frac{(\vec{c} \cdot \vec{b}) \vec{a}}{p^2}$$

(C)
$$\frac{\vec{a}}{p} - \frac{(\vec{a} \cdot \vec{b})}{p^2}$$

(A)
$$\frac{\vec{c}}{p} - \frac{(\vec{a} \cdot \vec{c}) \vec{b}}{p^2}$$
 (B) $\frac{\vec{a}}{p} - \frac{(\vec{c} \cdot \vec{b}) \vec{a}}{p^2}$ (C) $\frac{\vec{a}}{p} - \frac{(\vec{a} \cdot \vec{b}) \vec{c}}{p^2}$ (D) $\frac{\vec{c}}{p^2} - \frac{(\vec{a} \cdot \vec{c}) \vec{b}}{p}$

Find the direction cosines ℓ , m, n of a line which are connected by the relations ℓ + m + n = 0, 4. $2mn + 2m\ell - n\ell = 0.$

5. Find the equation of a straight line which passes through a point with position vector a, meets the line $\vec{r} = b + \lambda \vec{c}$ and is parallel to the plane $\vec{r} \cdot \vec{n} = 1$.

If the three planes $\vec{r}.\vec{n}_1=p_1, \vec{r}.\vec{n}_2=p_2$ and $\vec{r}.\vec{n}_3=p_3$ have a common line of intersection, then show 6. that $p_1(\vec{n}_2 \times \vec{n}_3) + p_2(\vec{n}_3 \times \vec{n}_1) + p_3(\vec{n}_1 \times \vec{n}_2) = \vec{0}$.

Find the equation of the plane through (3, 4, 1) which is parallel to the plane $\vec{r} \cdot (2\vec{i} - 3\vec{j} + 5\vec{k}) + 7 = 0$. 7.

8. Match the column

Column - I

Column - II

If $|\vec{a}| = |\vec{b}| = |\vec{c}| = 2$ and $\vec{a}.\vec{b} = \vec{b}.\vec{c} = \vec{c}.\vec{a} = 2$, then $|\vec{a} \cdot \vec{b} \cdot \vec{c}|$ is equal to (A)

32

If $|\vec{a}| = |\vec{b}| = |\vec{c}| = 2$ and $\vec{a}.\vec{b} = \vec{b}.\vec{c} = \vec{c}.\vec{a} = 2$, then $\sqrt{|\vec{a} \times \vec{b}|} |\vec{b} \times \vec{c}| |\vec{c} \times \vec{a}|$ (B) is equal to

 $4\sqrt{2}$ (q)

If $|\vec{a}| = |\vec{b}| = |\vec{c}| = 2$ and $\vec{a}.\vec{b} = \vec{b}.\vec{c} = \vec{c}.\vec{a} = 2$ and \vec{p} , \vec{q} and \vec{r} is reciprocal (C) (r) 5√3 system of \vec{a} , \vec{b} and \vec{c} , then 32 $[\vec{p} \vec{q} \vec{r}]$ is equal to

The area of a quadrilateral whose diagonals are $3\hat{i} + \hat{j} - 2\hat{k}$ (D) and $\hat{i} - 3\hat{j} + 4\hat{k}$ is

1 (s)

Answers Kev

- **1**. (A) **2**. (A) **3**. (A)
- **4.** $\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{-2}{\sqrt{6}}$ or $\frac{-2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}$
- **5.** $\vec{a} + m \left(\vec{b} + \frac{(\vec{a} \vec{b}) \cdot \vec{n}}{\vec{c} \cdot \vec{n}} \vec{c} \vec{a} \right)$
- 7. $\vec{r} \cdot (2\vec{i} 3\vec{j} + 5\vec{k}) + 1 = 0$
- **8.** (A) \rightarrow (q), (B) \rightarrow (q), (C) \rightarrow (q), (D) \rightarrow (r)

